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] ® Most acoustic phonon modes can be clearly observed, and their
S [vvrenre ven oo frequencies match reasonably with the phonon dispersions obtained based
Cu,TiSe, on the quasi-harmonic approximation.
3 4 5 6 7 8 9 10 ® Some phonon modes dominated by the vibrations of Cu2 atoms diminish,
Q (A1) such as the transverse acoustic (TA) modes near the M point and the

longitudinal acoustic (LA) modes near the R point.
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® Cu2 atoms exhibit thermally activated hopping behavior.
} ; . ® Due to the low diffusion coefficients, the convectional heat flux is negligible.
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® Cu2-induced dynamic disorder leads to the collapse of Cu2-dominated phonon modes

Conduct | - near the Brillouin zone boundary.
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