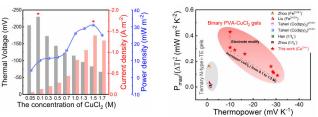


Multiple applications of soft materials in thermal energy harvesting, sweat sensor, and ultrasound manipulating

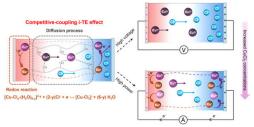
Project Supervisor: Prof. Nicholas X. Fang(nicxfang@hku.hk)

Department of Mechanical Engineering

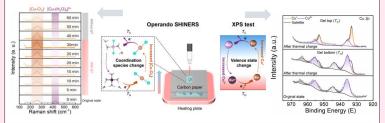

Ionic hydrogel for thermal energy harvesting

Contributors: Yuchen Li (ycyclee@hku.hk)

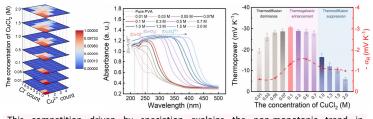
Fabrication of Ionic thermoelectric cells



Exceptional i-TE properties of PVA-x CuCl₂ gels


We uncovered a novel n-type thermogalvanic redox couple of Cu^{2+/+} stabilized by Cl-, exhibiting exceptional performance in output power and thermopower compared with reported n-type i-TE systems.

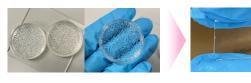
Mechanism of competitive-coupling i-TE effect

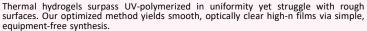

We reported a novel competitive-coupling mechanism driven by speciation in binary n-type PVA-CuCl $_2$ gels. This mechanism leads to an enhanced thermogalvanic effect with increasing CuCl $_2$ concentrations while suppressing the thermodiffusion.

Revelation redox reaction using operando SERS

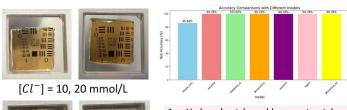
Our experimental characterization, combining SHINERS with surface analytical XPS characterization, is readily adaptable to other redox reaction-active hydrogels or soft-material systems, enabling precise mapping of both coordination and electronic states under operando conditions.

Impact of [Cu-Cl] speciation on thermopower



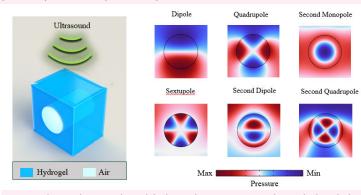

This competition driven by speciation explains the non-monotonic trend in thermopower, showing a maximum value of -30.6 mV $\rm K^{-1}$ at x = 0.1 M. Our findings demonstrate a novel competitive-coupling i-TE mechanism guided by coordination chemistry, offering a universal design principle for high-performance thermal-to-energy conversion systems.

Hydrogel sweat sensor for noninvasive diagnosis

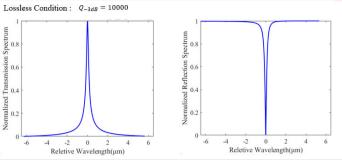

Contributors: zhouyuntong Liu (Izyt66@connect.hku.hk)

Fabrication of Optical Hydrogel

Analyte-Responsive Hydrogel Sensors + Neural Network Analytics


- Hydrogel patch enables sweat uptake with sensitive biomarker recognition.
 Excellent imaging optical clarity.
- NN achieves near-perfect accuracy (>99.9%) in biomarker concentration detection.

 $[Cl^{-}]$ = 40, 50 mmol/L


Achievement of High-order Mode in ultrasound-responsive hydrogel

Contributors: Weiwei Zhang(joshuaweiweizhang@connect.hku.hk)

Ultrasound-responsive hydrogels have recently garnered widespread application in the biomedical field due to their superior biocompatibility and cost-effectiveness, particularly in the development of implantable and wearable advanced devices.

In this study, we achieved higher-order scattering modes in hydrogels by incorporating gaseous materials, demonstrating superior performance in biomedical ultrasound modulation with retrieved Q-factors. Elevated Q-values enhance device sensitivity and resolution, enabling more precise medical ultrasound applications.

