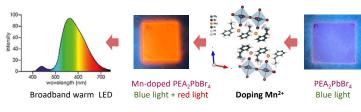
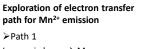


Optical response of advanced materials: tunability and photonic applications


Project Supervisor: Prof. Nicholas X. Fang (nicxfang@hku.hk)


Department of Mechanical Engineering

Optical response of 2D twisted bilayer graphene Contributors: Helios Yongnan Li (heliosynl@connect.hku.hk) AB-BLG Van der Waals Interaction & -RIG **Electron Coupling** Moiré patterns Energy (eV $\alpha_{2D}(\omega) = -\lim_{\boldsymbol{q} \to 0} \frac{L}{4\pi \boldsymbol{q}^2} \chi_{00}(\boldsymbol{q}, \omega)$ $\chi_{00}(\omega)$ with certain "thickness" Jockev Club Trust (GSP181)

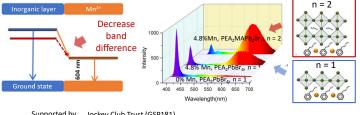
Energy transfer exploration in Mn²⁺ doped perovskite

Contributors: Tongwanming Zheng, Pingping Zhang(ppzhang@connect.hku.hk)

 $n(\omega) = \sqrt{\varepsilon(\omega)} = \sqrt{\chi_{00}(\omega) + 1}$

Defining "thickness" in 2D materials to predict measurable refractive index

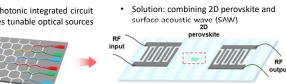
Inorganic layer → Mn ▶Path 2


Inorganic layer → STEs → Mn Path 1 dominates at RT $(k_BT > \Delta E_a)$

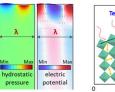
RGC (STG3/E-704/23-N)

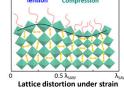
GBA Quantum Science Center (GDZX2304003)

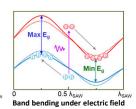
Strategy for Mn2+ emission enhancement at RT: decrease energy gap for Path 1



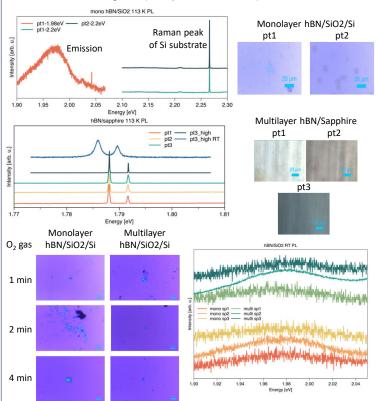
Supported by Jockey Club Trust (GSP181)


Optical modulation of 2D perovskite by SAW


Contributors: Pingping Zhang (ppzhang@connect.hku.hk)


Demands: Photonic integrated circuit (PIC) requires tunable optical sources


- 2D perovskite: high-efficiency light source
- SAW: elastic wave propagating on the surface of piezoelectric solid (strain & electric field)



Emission of 2D perovskite is modulated under SAW: intensity and wavelength

Defect emission of 2D hBN by plasma bombardment

Contributors: Helios Yongnan Li (heliosynl@connect.hku.hk)

