

LED-based Sensing of Hydrogen and Hydrocarbon Blends in Pipelines

Prof. Chuyu Wei Research Lab

Department of Mechanical Engineering

Introduction

- There is a critical technology gap for H₂ metering in a decarbonized natural gas network.
- Current H₂ sensing technologies lack the necessary speed, accuracy (<1%), selectivity, and cost-effectiveness, particularly for high-concentration applications.
- Our proposed approach introduces a new solution based on collision-induced infrared absorption that will lead to the first lowcost optical sensors for direct measurement of H₂ in fuel blends

	Proposed Method	Gas Chromatography	Electrochemical	Raman Spectroscopy
Range	Moderate/Wide (40-100%) (potential to extend lower)	Wide (ppm to high percentage)	Moderate (ppm to low percentage)	Wide (ppm to high percentage)
Accuracy	High (≤1% absolute error)	High (<1% absolute error)	Moderate/High (≤5-10% relative error)	High (<1% absolute error)
Response	Fast (>1Hz up to kHz)	Slow (minutes to hours)	Moderate (seconds to minutes)	Fast (one to low seconds)
Affordability	Low Cost (<\$1,000)	High Cost (>\$10,000)	Low Cost (<\$1,000)	High Cost (>\$10,000)

Methodology

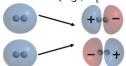
 Infrared molecular absorption spectroscopy is a well-established gas sensing technique that utilizes the resonant interaction between light and gas molecules with intrinsic electric dipole moment

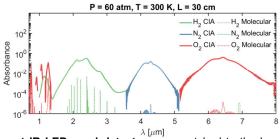
$$\alpha(v) = -\ln\left(\frac{I}{I_0}\right) = \sigma(v)nL$$

Molecular absorption scales **linearly** with density

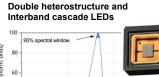
Electric dipole in H₂O

due to asymmetry


No dipole in Homonuclear diaton

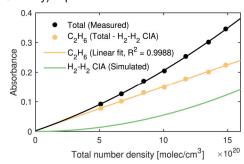

(like N₂, O₂, and H₂)

 Collision-induced absorption (CIA) arises from transient electric dipole moments through collisions in dense gases and allows for direct sensing of homonuclear diatomic molecules (e.g., N₂ and H₂)


$$\alpha_{CIA}(\nu) = \sigma^{(2)}(\nu) \cdot n^2 \cdot L$$

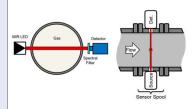
CIA scales quadratically with density

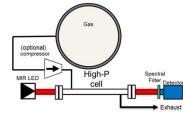
 Low-cost IR LEDs and detectors are matched to the broadband needs of the absorption band



Results/Progress

A multi-pressure sensing strategy was developed to separate H₂
CIA from molecular interferences (scales linearly with
pressure/density) in practical environments




- Successful laboratory demonstration of hydrogen sensing in hydrogen/fuel blends¹
- H2 measurement uncertainties <2% in multi-component fuel mixtures
- Preliminary tests and uncertainty analysis show promising results with potential applications in hydrogen technologies

Application	Pressure (Bar)	Temperature (°C)	H ₂ concentration
National Grid	1.5-20	Ambient	0-6%
Gas Turbine	20-40	50-90	0-50%
Turquoise H ₂ Production	1-30	250-400	50-100%
H ₂ Membranes	40-60	150-300	80-100%

In-line Sensor Configuration

Sampling Sensor Configuration

Conclusion

A low-cost, real-time sensor for metering H_2 -rich fuels is needed to overcome a critical technology gap impeding decarbonization of the natural gas network.

LED-based H_2 -CIA sensors offer an elegant, low-cost solution that could be the core element of a distributed sensor network across the entire H_2 and natural gas grid.

Empower the safe & profitable use of decarbonized natural gas through intelligent sensing

 C. Wei*, A. Klingberg, C. L. Strand, & R. K. Hanson, Measurement of hydrogen and nitrogen via collision-induced infrared absorption, International Journal of Hydrogen Energy, 2024, doi.org/10.1016/j.ijhydene.2024.10.318.