

SEMINAR

Title: De Novo Design of Controllable and Functional Self-assembling Protein Filament Biomaterials

Date: December 29, 2025 (Monday)

Time: 9:30 am

Venue: Room 7-34/35, Haking Wong Building
HKU

Speaker: Dr. Hao Shen
Postdoctoral Scientist
Institute for Protein Design & HHMI
University of Washington
USA

Abstract:

I have been dedicated to the de novo design of self-assembling protein filaments for a decade. I began with single-component fibers featuring defined structures, tunable diameters, and dynamic assembly. By continually advancing our methodology, I now design multi-component, ligand-induced, environmentally responsive, and nucleation-controlled protein filaments up to 10 μm in length with high rigidity. In parallel, I have created functional protein fibers for applications including conductive nanowires, fibers with energy-transferable ligands, and fibers that bind carbon nanotubes or exhibit designed fluorescence.

With the ability to program functional proteins into helical filament assemblies, I am deeply interested in developing protein-fiber-based nanomachines such as nanoscale walkers and self-assembling smart materials. Controlled assembly can serve as a signal-amplification platform for diagnostics. The defined filament architectures enable scaffolding of proteins of interest for cryo-EM structure determination. These filaments also interface with inorganic materials to create complex hybrid systems. Beyond biotechnological applications, precisely designed helical filaments offer significant opportunities to study molecular self-assembly mechanisms and their interactions with cellular biology through *in vivo* assembly.

ALL INTERESTED ARE WELCOME

For further information, please contact Prof. Mingxin Huang at 39177906.